Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.372
Filtrar
1.
J Agric Food Chem ; 72(15): 8618-8631, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569082

RESUMO

Daidzein (DAN) is an isoflavone, and it is often found in its natural form in soybean and food supplements. DAN has poor bioavailability owing to its extremely low water solubility and first-pass metabolism. Herein, we hypothesized that a bioactivatable natural amino acid-bearing carbamate prodrug strategy could increase the water solubility and metabolic stability of DAN. To test our hypothesis, nine amino acid prodrugs of DAN were designed and synthesized. Compared with DAN, the optimal prodrug (daidzein-4'-O-CO-N-isoleucine, D-4'-I) demonstrated enhanced water solubility and improved phase II metabolic stability and activation to DAN in plasma. In addition, unlike the passive transport of DAN, D-4'-I maintained high permeability via organic anion-transporting polypeptide 2B1 (OATP2B1)-mediated transport. Importantly, D-4'-I increased the oral bioavailability by 15.5-fold, reduced the gender difference, and extended the linear absorption capacity in the pharmacokinetics of DAN in rats. Furthermore, D-4'-I exhibited dose-dependent protection against liver injury. Thus, the natural amino acid-bearing carbamate prodrug strategy shows potential in increasing water solubility and improving phase II metabolic stability to enhance the oral bioavailability of DAN.


Assuntos
Isoflavonas , Pró-Fármacos , Ratos , Animais , Aminoácidos/química , Disponibilidade Biológica , Solubilidade , Pró-Fármacos/química , Carbamatos/química , Água , Administração Oral
3.
Chirality ; 36(4): e23665, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570326

RESUMO

In this paper, the amino acid chiral ionic liquid (AACIL) was prepared with L-phenylalanine and imidazole. It was characterized by CD, FT-IR, 1H NMR, and 13C NMR spectrum. The chiral recognition sensor was constructed with AACIL and Cu(II), which exhibited different chiral visual responses (solubility or color difference) to the enantiomers of glutamine (Gln) and phenylalanine (Phe). The effects of solvent, pH, time, temperature, metal ions, and other amino acids on visual chiral recognition were optimized. The minimum concentrations of Gln and Phe for visual chiral recognition were 0.20 mg/ml and 0.28 mg/ml, respectively. The mechanism of chiral recognition was investigated by FT-IR, TEM, SEM, TG, XPS, and CD. The location of the host-guest inclusion or molecular placement has been conformationally searched based on Gaussian 09 software.


Assuntos
Aminoácidos , Líquidos Iônicos , Aminoácidos/química , Fenilalanina/química , Glutamina , Líquidos Iônicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo
4.
PLoS One ; 19(4): e0289644, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598436

RESUMO

Glutamate transporters play key roles in nervous physiology by modulating excitatory neurotransmitter levels, when malfunctioning, involving in a wide range of neurological and physiological disorders. However, integral transmembrane proteins including the glutamate transporters remain notoriously difficult to study, due to their localization within the cell membrane. Here we present the structural bioinformatics studies of glutamate transporters and their water-soluble variants generated through QTY-code, a protein design strategy based on systematic amino acid substitutions. These include 2 structures determined by X-ray crystallography, cryo-EM, and 6 predicted by AlphaFold2, and their predicted water-soluble QTY variants. In the native structures of glutamate transporters, transmembrane helices contain hydrophobic amino acids such as leucine (L), isoleucine (I), and phenylalanine (F). To design water-soluble variants, these hydrophobic amino acids are systematically replaced by hydrophilic amino acids, namely glutamine (Q), threonine (T) and tyrosine (Y). The QTY variants exhibited water-solubility, with four having identical isoelectric focusing points (pI) and the other four having very similar pI. We present the superposed structures of the native glutamate transporters and their water-soluble QTY variants. The superposed structures displayed remarkable similarity with RMSD 0.528Å-2.456Å, despite significant protein transmembrane sequence differences (41.1%->53.8%). Additionally, we examined the differences of hydrophobicity patches between the native glutamate transporters and their QTY variants. Upon closer inspection, we discovered multiple natural variations of L->Q, I->T, F->Y and Q->L, T->I, Y->F in these transporters. Some of these natural variations were benign and the remaining were reported in specific neurological disorders. We further investigated the characteristics of hydrophobic to hydrophilic substitutions in glutamate transporters, utilizing variant analysis and evolutionary profiling. Our structural bioinformatics studies not only provided insight into the differences between the hydrophobic helices and hydrophilic helices in the glutamate transporters, but they are also expected to stimulate further study of other water-soluble transmembrane proteins.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Água , Sistema X-AG de Transporte de Aminoácidos/genética , Aminoácidos/química , Proteínas de Membrana , Mutação , Biologia Computacional , Glutamatos
5.
J Org Chem ; 89(8): 5511-5517, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38592436

RESUMO

A CSD search in the Cambridge Crystallographic Database for the substructure N-CαH-C'(═O)-N gave 24,180 peptide structures for analysis of the pyramidalization of the sp2-hybridized carboxamide group C'(═O)NCα, which had not been investigated before. The dependence of the pyramidalization θ = O-N-C'-Cα on the rotation angle ψ = O═C'-Cα-N about bond C'-Cα resulted in a curve with three maxima, three minima, and six zero-crossings. Surprisingly, the ψ/θ analysis of the individual amino acid building blocks showed that all of them exhibited similar curves, irrespective of their different R substituents. This unusual behavior is explained by a 3-fold short-range potential set up by the three covalent bonds, emanating from Cα. The tie-up of the rotation angle ψ and the pyramidalization θ in a rigid coupling is remarkable. In the 24,180 peptide structures, subjected to X-ray crystallography, there is no dynamics. For peptides in solution, the rotation/pyramidalization curve ψ/θav determines the degree of pyramidalization θ, when the rotation angle ψ runs through a full 360° circle. Density functional theory (DFT) calculations of alaninamide supported the analysis.


Assuntos
Aminoácidos , Peptídeos , Peptídeos/química , Aminoácidos/química , Cristalografia por Raios X
6.
Nat Commun ; 15(1): 3314, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632229

RESUMO

Chiral recognition of amino acids is very important in both chemical and life sciences. Although chiral recognition with luminescence has many advantages such as being inexpensive, it is usually slow and lacks generality as the recognition module relies on structural complementarity. Here, we show that one single molecular-solid sensor, L-phenylalanine derived benzamide, can manifest the structural difference between the natural, left-handed amino acid and its right-handed counterpart via the difference of room-temperature phosphorescence (RTP) irrespective of the specific chemical structure. To realize rapid and reliable sensing, the doped samples are obtained as nanocrystals from evaporation of the tetrahydrofuran solutions, which allows for efficient triplet-triplet energy transfer to the chiral analytes generated in situ from chiral amino acids. The results show that L-analytes induce strong RTP, whereas the unnatural D-analytes produce barely any afterglow. The method expands the scope of luminescence chiral sensing by lessening the requirement for specific molecular structures.


Assuntos
Aminoácidos , Luminescência , Aminoácidos/química , Temperatura , Estrutura Molecular
7.
J Phys Chem B ; 128(10): 2304-2316, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38430110

RESUMO

Classical molecular dynamics (MD) simulations provide unmatched spatial and time resolution of protein structure and function. However, the accuracy of MD simulations often depends on the quality of force field parameters and the time scale of sampling. Another limitation of conventional MD simulations is that the protonation states of titratable amino acid residues remain fixed during simulations, even though protonation state changes coupled to conformational dynamics are central to protein function. Due to the uncertainty in selecting protonation states, classical MD simulations are sometimes performed with all amino acids modeled in their standard charged states at pH 7. Here, we performed and analyzed classical MD simulations on high-resolution cryo-EM structures of two large membrane proteins that transfer protons by catalyzing protonation/deprotonation reactions. In simulations performed with titratable amino acids modeled in their standard protonation (charged) states, the structure diverges far from its starting conformation. In comparison, MD simulations performed with predetermined protonation states of amino acid residues reproduce the structural conformation, protein hydration, and protein-water and protein-protein interactions of the structure much better. The results support the notion that it is crucial to perform basic protonation state calculations, especially on structures where protonation changes play an important functional role, prior to the launch of any conventional MD simulations. Furthermore, the combined approach of fast protonation state prediction and MD simulations can provide valuable information about the charge states of amino acids in the cryo-EM sample. Even though accurate prediction of protonation states in proteinaceous environments currently remains a challenge, we introduce an approach of combining pKa prediction with cryo-EM density map analysis that helps in improving not only the protonation state predictions but also the atomic modeling of density data.


Assuntos
Proteínas de Membrana , Simulação de Dinâmica Molecular , Prótons , Aminoácidos/química , Conformação Molecular , Conformação Proteica
8.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543045

RESUMO

Due to the specific properties provided by fluorine atoms to biomolecules, amino acids with fluorinated side chains are of great interest for medicinal chemistry and chemical biology. Among them, α-fluoroalkyl-α-amino acids constitute a unique class of compounds. In this review, we outline the strategies adopted for their syntheses in enantiopure or enantioenriched forms and their incorporation into peptides. We then describe the consequences of the introduction of fluorine atoms in these compounds for the modulation of their hydrophobicity and the control of their conformation. Emerging applications are presented in the areas of enzyme inhibition, medicinal chemistry, hydrolytic stability of peptides, antimicrobial peptides, PET, and 19F NMR probes.


Assuntos
Aminoácidos , Flúor , Flúor/química , Aminoácidos/química , Peptídeos/química , Conformação Molecular
9.
J Am Chem Soc ; 146(12): 8058-8070, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38491946

RESUMO

Thiopeptides make up a group of structurally complex peptidic natural products holding promise in bioengineering applications. The previously established thiopeptide/mRNA display platform enables de novo discovery of natural product-like thiopeptides with designed bioactivities. However, in contrast to natural thiopeptides, the discovered structures are composed predominantly of proteinogenic amino acids, which results in low metabolic stability in many cases. Here, we redevelop the platform and demonstrate that the utilization of compact reprogrammed genetic codes in mRNA display libraries can lead to the discovery of thiopeptides predominantly composed of nonproteinogenic structural elements. We demonstrate the feasibility of our designs by conducting affinity selections against Traf2- and NCK-interacting kinase (TNIK). The experiment identified a series of thiopeptides with high affinity to the target protein (the best KD = 2.1 nM) and kinase inhibitory activity (the best IC50 = 0.15 µM). The discovered compounds, which bore as many as 15 nonproteinogenic amino acids in an 18-residue macrocycle, demonstrated high metabolic stability in human serum with a half-life of up to 99 h. An X-ray cocrystal structure of TNIK in complex with a discovered thiopeptide revealed how nonproteinogenic building blocks facilitate the target engagement and orchestrate the folding of the thiopeptide into a noncanonical conformation. Altogether, the established platform takes a step toward the discovery of thiopeptides with high metabolic stability for early drug discovery applications.


Assuntos
Aminoácidos , Peptídeos , Humanos , Peptídeos/química , Aminoácidos/química , Código Genético , RNA Mensageiro
10.
Nano Lett ; 24(14): 4091-4100, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38489158

RESUMO

Catalytic cancer therapy targets cancer cells by exploiting the specific characteristics of the tumor microenvironment (TME). TME-based catalytic strategies rely on the use of molecules already present in the TME. Amino groups seem to be a suitable target, given the abundance of proteins and peptides in biological environments. Here we show that catalytic CuFe2O4 nanoparticles are able to foster transaminations with different amino acids and pyruvate, another key molecule present in the TME. We observed a significant in cellulo decrease in glutamine and alanine levels up to 48 h after treatment. In addition, we found that di- and tripeptides also undergo catalytic transamination, thereby extending the range of the effects to other molecules such as glutathione disulfide (GSSG). Mechanistic calculations for GSSG transamination revealed the formation of an imine between the oxo group of pyruvate and the free -NH2 group of GSSG. Our results highlight transamination as alternative to the existing toolbox of catalytic therapies.


Assuntos
Aminoácidos , Neoplasias , Aminoácidos/química , Dissulfeto de Glutationa , Microambiente Tumoral , Aminas , Ácido Pirúvico , Catálise
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124156, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508075

RESUMO

Double PHD fingers 3 (DPF3) protein exists as two splicing variants, DPF3b and DPF3a, the involvement of which in human cancer and neurodegeneration is beginning to be increasingly recognised. Both isoforms have recently been identified as intrinsically disordered proteins able to undergo amyloid fibrillation. Upon their aggregation, DPF3 proteins exhibit an intrinsic fluorescence in the visible range, referred to as deep-blue autofluorescence (dbAF). Comprehension of such phenomenon remaining elusive, we investigated in the present study the influence of pH on the optical properties of DPF3b and DPF3a fibrils. By varying the excitation wavelength and the pH condition, the two isoforms were revealed to display several autofluorescence modes that were defined as violet, deep-blue, and blue-green according to their emission range. Complementarily, analysis of excitation spectra and red edge shift plots allowed to better decipher their photoselection mechanism and to highlight isoform-specific excitation-emission features. Furthermore, the observed violation to Kasha-Vavilov's rule was attributed to red edge excitation shift effects, which were impacted by pH-mediated H-bond disruption, leading to changes in intramolecular charge and proton transfer, or π-electrons delocalisation. Finally, emergence of different autofluorescence emitters was likely related to structurally distinct fibrillar assemblies between isoforms, as well as to discrepancies in the amino acid composition of their aggregation prone regions.


Assuntos
Aminoácidos , Amiloide , Humanos , Amiloide/química , Aminoácidos/química , Isoformas de Proteínas/metabolismo , Prótons , Concentração de Íons de Hidrogênio
12.
Methods Mol Biol ; 2758: 227-240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549017

RESUMO

D-amino acid-containing peptides (DAACPs) in animals are a class of bioactive molecules formed via the posttranslational modification of peptides consisting of all-L-amino acid residues. Amino acid residue isomerization greatly impacts the function of the resulting DAACP. However, because isomerization does not change the peptide's mass, this modification is difficult to detect by most mass spectrometry-based peptidomic approaches. Here we describe a method for the identification of DAACPs that can be used to systematically survey peptides extracted from a tissue sample in a nontargeted manner.


Assuntos
Aminoácidos , 60705 , Animais , Aminoácidos/química , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Peptídeos
13.
Protein Sci ; 33(4): e4950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511503

RESUMO

Protein nuclear magnetic resonance (NMR) spectroscopy relies on the ability to isotopically label polypeptides, which is achieved through heterologous expression in various host organisms. Most commonly, Escherichia coli is employed by leveraging isotopically substituted ammonium and glucose to uniformly label proteins with 15N and 13C, respectively. Moreover, E. coli can grow and express proteins in uniformly deuterium-substituted water (D2O), a strategy useful for experiments targeting high molecular weight proteins. Unfortunately, many proteins, particularly those requiring specific posttranslational modifications like disulfide bonding or glycosylation for proper folding and/or function, cannot be readily expressed in their functional forms using E. coli-based expression systems. One such class of proteins includes T-cell receptors and their related preT-cell receptors. In this study, we present an expression system for isotopic labeling of proteins using a nonadherent human embryonic kidney cell line, Expi293F, and a specially designed media. We demonstrate the application of this platform to the ß subunit common to both receptors. In addition, we show that this expression system and media can be used to specifically label amino acids Phe, Ile, Val, and Leu in this system, utilizing an amino acid-specific labeling protocol that allows targeted incorporation at high efficiency without significant isotopic scrambling. We demonstrate that this system can also be used to express proteins with fluorinated amino acids. We were routinely able to obtain an NMR sample with a concentration of 200 µM from 30 mL of culture media, utilizing less than 20 mg of the labeled amino acids.


Assuntos
Aminoácidos , Escherichia coli , Animais , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Aminoácidos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Mamíferos
14.
J Org Chem ; 89(7): 4760-4767, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38544408

RESUMO

Although the construction of peptides with well-defined three-dimensional structures and predictable functions, including biological activity, using conformationally constrained ß-amino acids has been shown to be a very successful strategy, their broad application is limited by access to the appropriate building blocks. In particular, trans- and cis-stereoisomers of 2-aminocyclopentanecarboxylic acid (ACPC) are of high interest. The scalable synthesis of all four stereoisomers of Fmoc derivatives of ACPC is presented with NMR-based analysis methods for their enantiomeric purity.


Assuntos
Aminoácidos , Peptídeos , Estereoisomerismo , Peptídeos/química , Aminoácidos/química , Espectroscopia de Ressonância Magnética
15.
Nat Methods ; 21(4): 609-618, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443507

RESUMO

Precise identification and quantification of amino acids is crucial for many biological applications. Here we report a copper(II)-functionalized Mycobacterium smegmatis porin A (MspA) nanopore with the N91H substitution, which enables direct identification of all 20 proteinogenic amino acids when combined with a machine-learning algorithm. The validation accuracy reaches 99.1%, with 30.9% signal recovery. The feasibility of ultrasensitive quantification of amino acids was also demonstrated at the nanomolar range. Furthermore, the capability of this system for real-time analyses of two representative post-translational modifications (PTMs), one unnatural amino acid and ten synthetic peptides using exopeptidases, including clinically relevant peptides associated with Alzheimer's disease and cancer neoantigens, was demonstrated. Notably, our strategy successfully distinguishes peptides with only one amino acid difference from the hydrolysate and provides the possibility to infer the peptide sequence.


Assuntos
Nanoporos , Aminoácidos/química , Peptídeos/química , Sequência de Aminoácidos , Porinas/química , Porinas/metabolismo
16.
Methods Mol Biol ; 2760: 219-251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468092

RESUMO

Expanding the genetic code beyond the 20 canonical amino acids enables access to a wide range of chemical functionality that is inaccessible within conventionally biosynthesized proteins. The vast majority of efforts to expand the genetic code have focused on the orthogonal translation systems required to achieve the genetically encoded addition of noncanonical amino acids (ncAAs) into proteins. There remain tremendous opportunities for identifying genetic and genomic factors that enhance ncAA incorporation. Here we describe genome-wide screening strategies to identify factors that enable more efficient addition of ncAAs to biosynthesized proteins. These unbiased screens can reveal previously unknown genes or mutations that can enhance ncAA incorporation and deepen our understanding of the translation apparatus.


Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases , Aminoácidos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas/química , Código Genético , Aminoacil-tRNA Sintetases/metabolismo
17.
Bioorg Med Chem ; 102: 117663, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38457910

RESUMO

We report the development of a new oxazole-based cleavable linker to release peptides from attached cargo. Oxazoles are stable to most reaction conditions, yet they can be rapidly cleaved in the presence of single-electron oxidants like cerium ammonium nitrate (CAN). An oxazole linker could be synthesized and attached to peptides through standard solid-phase peptide coupling reactions. Cleavage of these peptide-oxazole conjugates is demonstrated on a broad scope of peptides containing various natural and unnatural amino acids. These results represent the first example of a peptide-based linker that is cleaved through single-electron oxidation. The oxazole is also demonstrated to be a suitable linker for both the release of a peptide from a conjugated small molecule and the orthogonal release of cargo from a peptide containing multiple cleavable linkers. Oxazole linkers could serve as a promising tool for peptide screening platforms such as peptide-encoded libraries.


Assuntos
Oxazóis , Peptídeos , Oxazóis/química , Peptídeos/química , Aminoácidos/química , Biblioteca de Peptídeos , Oxirredução
18.
ACS Nano ; 18(11): 8017-8028, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456817

RESUMO

d-Amino acids are signals for biofilm disassembly. However, unexpected metabolic pathways severely attenuate the utilization of d-amino acids in biofilm disassembly, resulting in unsatisfactory efficiency. Herein, three-dimensional poly(d-amino acid) nanoparticles (NPs), which possess the ability to block intracellular metabolism, are constructed with the aim of disassembling the biofilms. The obtained poly(α-N-acryloyl-d-phenylalanine)-block-poly(ß-N-acryloyl-d-aminoalanine NPs (denoted as FA NPs) present α-amino groups and α-carboxyl groups of d-aminoalanine on their surface, which guarantees that FA NPs can effectively insert into bacterial peptidoglycan (PG) via the mediation of PG binding protein 4 (PBP4). Subsequently, the FA NPs trigger the detachment of amyloid-like fibers that connect to the PG and reduce the number of polysaccharides and proteins in extracellular polymeric substances (EPS). Finally, FA NPs damage the structural stability of EPS and lead to the disassembly of the biofilm. Based on this feature, FA NPs significantly enhance the killing efficacy of encapsulated sitafloxacin sesquihydrate (Sita) by facilitating the penetration of Sita within the biofilm, achieving complete elimination of Staphylococcal biofilm in mice. Therefore, this study strongly demonstrates that FA NPs can effectively improve biofilm disassembly efficacy and provide great potential for bacterial biofilm infection treatment.


Assuntos
Aminoácidos , Nanopartículas , Animais , Camundongos , Aminoácidos/química , Peptidoglicano , Biofilmes , Polissacarídeos , Nanopartículas/química
19.
Acc Chem Res ; 57(6): 855-869, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38452397

RESUMO

ConspectusSince the pioneering work of Curtius and Fischer, chemical peptide synthesis has witnessed a century's development and evolved into a routine technology. However, it is far from perfect. In particular, it is challenged by sustainable development because the state-of-the-art of peptide synthesis heavily relies on legacy reagents and technologies developed before the establishment of green chemistry. Over the past three decades, a broad range of efforts have been made for greening peptide synthesis, among which peptide synthesis using unprotected amino acid represents an ideal and promising strategy because it does not require protection and deprotection steps. Unfortunately, C → N peptide synthesis employing unprotected amino acids has been plagued by undesired polymerization, while N → C inverse peptide synthesis with unprotected amino acids is retarded by severe racemization/epimerization owing to the iterative activation and aminolysis of high racemization/epimerization susceptible peptidyl acids. Consequently, there is an urgent need to develop innovative coupling reagents and strategies with novel mechanisms that can address the long-standing notorious racemization/epimerization issue of peptide synthesis.This Account will describe our efforts in discovery of ynamide coupling reagents and their application in greening peptide synthesis. Over an eight-year journey, ynamide coupling reagents have evolved into a class of general coupling reagents for both amide and ester bond formation. In particular, the superiority of ynamide coupling reagents in suppressing racemization/epimerization enabled them to be effective for peptide fragment condensation, and head-to-tail cyclization, as well as precise incorporation of thioamide substitutions into peptide backbones. The first practical inverse peptide synthesis using unprotected amino acids was successfully accomplished by harnessing such features and taking advantage of a transient protection strategy. Ynamide coupling reagent-mediated ester bond formation enabled efficient intermolecular esterification and macrolactonization with preservation of α-chirality and the configuration of the conjugated α,ß-C-C double bond. To make ynamide coupling reagents readily available with reasonable cost and convenience, we have developed a scalable one-step synthetic method from cheap starting materials. Furthermore, a water-removable ynamide coupling reagent was developed, offering a column-free purification of the target coupling product. In addition, the recycle of ynamide coupling reagent was accomplished, thereby paving the way for their sustainable industrial application.As such, this Account presents the whole story of the origin, mechanistic insights, preparation, synthetic applications, and recycle of ynamide coupling reagents with a perspective that highlights their future impact on peptide synthesis.


Assuntos
Amidas , Peptídeos , Indicadores e Reagentes , Peptídeos/química , Amidas/química , Aminoácidos/química , Ésteres
20.
Org Lett ; 26(11): 2207-2211, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38457925

RESUMO

The one-pot MAC (Masked Acyl Cyanide) reaction is used to perform the tandem oxyhomologation reaction of N,N-dibenzyl-l-phenylalaninal and coupling with nitrogen nucleophiles to provide a wide selection of amide and peptide derivatives of (2S,3S)-allophenylnorstatin in generally good yields and with high anti selectivity, often with dr >98:2. The procedure works equally well with other selected N,N-dibenzyl α-amino aldehydes, and is used to achieve a very short synthesis of (2S,3S,S)-epibestatin.


Assuntos
Amidas , Peptídeos , Amidas/química , Estereoisomerismo , Aminoácidos/química , Cianetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...